direct product, metabelian, supersoluble, monomial, A-group, rational
Aliases: C2×S33, C33⋊C24, (S3×C6)⋊14D6, (C32×C6)⋊C23, (S3×C32)⋊C23, C33⋊C2⋊C23, C32⋊4(S3×C23), C32⋊4D6⋊4C22, C6⋊1(C2×S32), (S32×C6)⋊11C2, C3⋊1(C22×S32), (S3×C3⋊S3)⋊C22, (C3×C3⋊S3)⋊C23, (C2×C3⋊S3)⋊18D6, (C3×S32)⋊4C22, C3⋊S3⋊2(C22×S3), (S3×C3×C6)⋊15C22, (C3×C6)⋊4(C22×S3), (C6×C3⋊S3)⋊13C22, (C3×S3)⋊1(C22×S3), (C2×C32⋊4D6)⋊7C2, (C2×C33⋊C2)⋊8C22, (C2×S3×C3⋊S3)⋊11C2, SmallGroup(432,759)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — C2×S33 |
Generators and relations for C2×S33
G = < a,b,c,d,e,f,g | a2=b3=c2=d3=e2=f3=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, cbc=b-1, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, ede=d-1, df=fd, dg=gd, ef=fe, eg=ge, gfg=f-1 >
Subgroups: 3916 in 642 conjugacy classes, 132 normal (7 characteristic)
C1, C2, C2, C3, C3, C22, S3, S3, C6, C6, C23, C32, C32, D6, D6, C2×C6, C24, C3×S3, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C22×S3, C22×C6, C33, S32, S32, S3×C6, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, S3×C23, S3×C32, C3×C3⋊S3, C33⋊C2, C32×C6, C2×S32, C2×S32, S3×C2×C6, C22×C3⋊S3, C3×S32, S3×C3⋊S3, C32⋊4D6, S3×C3×C6, C6×C3⋊S3, C2×C33⋊C2, C22×S32, S33, S32×C6, C2×S3×C3⋊S3, C2×C32⋊4D6, C2×S33
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, S32, S3×C23, C2×S32, C22×S32, S33, C2×S33
(1 5)(2 6)(3 4)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 16)(2 18)(3 17)(4 14)(5 13)(6 15)(7 23)(8 22)(9 24)(10 20)(11 19)(12 21)
(1 2 3)(4 5 6)(7 9 8)(10 12 11)(13 15 14)(16 18 17)(19 20 21)(22 23 24)
(1 11)(2 12)(3 10)(4 7)(5 8)(6 9)(13 22)(14 23)(15 24)(16 19)(17 20)(18 21)
(1 3 2)(4 6 5)(7 9 8)(10 12 11)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 19)(2 20)(3 21)(4 24)(5 22)(6 23)(7 15)(8 13)(9 14)(10 18)(11 16)(12 17)
G:=sub<Sym(24)| (1,5)(2,6)(3,4)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,16)(2,18)(3,17)(4,14)(5,13)(6,15)(7,23)(8,22)(9,24)(10,20)(11,19)(12,21), (1,2,3)(4,5,6)(7,9,8)(10,12,11)(13,15,14)(16,18,17)(19,20,21)(22,23,24), (1,11)(2,12)(3,10)(4,7)(5,8)(6,9)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,19)(2,20)(3,21)(4,24)(5,22)(6,23)(7,15)(8,13)(9,14)(10,18)(11,16)(12,17)>;
G:=Group( (1,5)(2,6)(3,4)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,16)(2,18)(3,17)(4,14)(5,13)(6,15)(7,23)(8,22)(9,24)(10,20)(11,19)(12,21), (1,2,3)(4,5,6)(7,9,8)(10,12,11)(13,15,14)(16,18,17)(19,20,21)(22,23,24), (1,11)(2,12)(3,10)(4,7)(5,8)(6,9)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,19)(2,20)(3,21)(4,24)(5,22)(6,23)(7,15)(8,13)(9,14)(10,18)(11,16)(12,17) );
G=PermutationGroup([[(1,5),(2,6),(3,4),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,16),(2,18),(3,17),(4,14),(5,13),(6,15),(7,23),(8,22),(9,24),(10,20),(11,19),(12,21)], [(1,2,3),(4,5,6),(7,9,8),(10,12,11),(13,15,14),(16,18,17),(19,20,21),(22,23,24)], [(1,11),(2,12),(3,10),(4,7),(5,8),(6,9),(13,22),(14,23),(15,24),(16,19),(17,20),(18,21)], [(1,3,2),(4,6,5),(7,9,8),(10,12,11),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,19),(2,20),(3,21),(4,24),(5,22),(6,23),(7,15),(8,13),(9,14),(10,18),(11,16),(12,17)]])
G:=TransitiveGroup(24,1296);
54 conjugacy classes
class | 1 | 2A | 2B | ··· | 2G | 2H | ··· | 2M | 2N | 2O | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 6A | 6B | 6C | 6D | 6E | 6F | 6G | ··· | 6R | 6S | 6T | ··· | 6Y | 6Z | ··· | 6AE |
order | 1 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 |
size | 1 | 1 | 3 | ··· | 3 | 9 | ··· | 9 | 27 | 27 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | ··· | 6 | 8 | 12 | ··· | 12 | 18 | ··· | 18 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | S32 | C2×S32 | C2×S32 | S33 | C2×S33 |
kernel | C2×S33 | S33 | S32×C6 | C2×S3×C3⋊S3 | C2×C32⋊4D6 | C2×S32 | S32 | S3×C6 | C2×C3⋊S3 | D6 | S3 | C6 | C2 | C1 |
# reps | 1 | 8 | 3 | 3 | 1 | 3 | 12 | 6 | 3 | 3 | 6 | 3 | 1 | 1 |
Matrix representation of C2×S33 ►in GL6(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | -1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
-1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,-1,0,0,0,0,1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,1,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C2×S33 in GAP, Magma, Sage, TeX
C_2\times S_3^3
% in TeX
G:=Group("C2xS3^3");
// GroupNames label
G:=SmallGroup(432,759);
// by ID
G=gap.SmallGroup(432,759);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,298,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^3=c^2=d^3=e^2=f^3=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*d*e=d^-1,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,g*f*g=f^-1>;
// generators/relations